
Explaining the Cause of an Error

void add(Object o) {
buffer[head] = o;
head = (head+1)%size;

}

Object take() {
tail=(tail+1)%size;
return buffer[tail];

}

Code with Transient Error

Hard to Show Error
Testing cannot reliably show 

the error appearing, since 
it may require specific 

environment actions (inputs) or 
scheduling (for concurrency errors)

Hard to Find 
Cause of the Error

Once we know a way 
to show the error it is difficult to 

localize the root cause of the error

+

void add(Object o) {
buffer[head] = o;
head = (head+1)%size;
}

Object take() {
tail=(tail+1)%size;
return buffer[tail];
}

Software
Model Checker

JPF

void add(Object o) {
buffer[head] = o;
head = (head+1)%size;
}

Object take() {
tail=(tail+1)%size;
return buffer[tail];
}

Produces 
Error Trace

Error
Explanation

Localize Cause
of the Error

Now we can automatically find an explanation 
for the error from the error trace produced by 
the model checker and the original program

The algorithm uses model checking to 
first find similar traces that also 
cause the error (negatives) and 

traces that do not cause the error (positives)

Set of Negatives
Traces that show different 

versions of the error

1. Source code similarities to explain control errors
• code that appear only in negatives
• all negatives, and, 
• only and all negatives (causal)

2. Data invariants – explains errors in data
3. Minimal transformations to create a negative 

from a positive – show the essence of an error

A model checker can automatically 
find a trace that shows the error appearing

Set of Positives
Traces that don’t show 

the error
Analysis



Explanation of Accomplishment
• POC: Willem Visser (ASE group, Code IC, wvisser@email.arc.nasa.gov)
• Shown: A transient error is first, hard to make appear, and second, once a symptomatic 

behavior for the error is found, hard to find the cause of the error. In previous work we 
have shown that a model checker can be used to automatically find transient errors, such 
as those caused by concurrency related problems. However, a model checker only 
produces an error trace and does not give any guidance of what the cause of the error is; 
here we address this second problem by introducing a technique whereby the cause of an 
error is explained. The algorithm analyzes two sets of traces in order to explain the 
cause of an error, namely, a set of traces that show different versions of the error (called 
negatives) and a set of traces that do not show the error (called positives). From these 
sets the algorithm either pinpoints a line of code that is most likely to be the cause of the 
error, a data invariant common to all errors, or a way to take a positive and make a 
minimal change to it to create a negative.

• Accomplishment: The error explanation algorithm have been implemented in the Java 
PathFinder model checker toolset. It has been used to explain errors in a number of 
complex software systems, including the DEOS real-time operating system and the Mars 
K9 Executive prototype. The analysis is confined to behaviors “close” to the original 
error trace and therefore scales very well (even better than model checking itself). Note, 
the algorithm is a “in-time” algorithm, i.e. the more time it is given the more accurate 
are the error explanations. 

• Future Plans: Our plans are to improve the methods of analysis both to provide more 
useful feedback and to do more automatic classification of errors (note currently we 
only classify concurrency errors automatically, but it is possible to classify errors that 
can only be caused by the environment of the program, etc.). Another possibility is to 
generate from the negatives an automaton for an environment that avoids reproducing 
the error – this environment can then be used during runtime monitoring to prevent 
errors in the real system.


	Explanation of Accomplishment

